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This paper treats a liquid-metal flow through a sharp elbow connecting two constant- 
area, rectangular ducts with thin metal walls. There is a uniform, strong magnetic 
field in the plane of the centrelines of the ducts. An analytical solution .with a series 
of eigenfunctions is possible for two sectors of the geometry, while a finite-difference 
relaxation solution is used for the third sector. The analytical and numerical 
solutions are coupled at the common boundaries by a combination of a Galerkin 
minimization of a residual and of integrals of the basic conservation laws over cells 
adjacent to each boundary. Results are presented for the three-dimensional pressure, 
electric potential function and fluid velocity. The pressure drop due to the three- 
dimensional effects near the elbow is also presented. The eigenfunction series 
represents a quite general solution for any three-dimensional flow in a rectangular 
duct with a skewed magnetic field. 

1. Introduction 
A large pressure drop may be required to pump a liquid metal through a duct in 

the presence of a strong magnetic field because of the large electromagnetic (EM) 
body force opposing the flow. A large pressure drop may imply an undesirably large 
pumping power or undesirably large stresses in the walls confining the flow. The fluid 
motion across the magnetic field drives an electric current in the liquid metal, and 
the electric current produces the EM body force opposing the motion. If the inside 
surfaces of the duct walls are electrically insulated, then the electric current path is 
completed through the thin Hartmann layers adjacent to the walls. These thin layers 
have a large electrical resistance, so that the electric current and pressure drop are 
small. However, many liquid metals are not compatible with electrica,lly insulating 
materials, particularly a t  elevated temperatures, so that uninsulated metal walls 
must be used. When the electric current path is completed through the low-resistance 
metal walls, the current and pressure drop are much larger. Thin metal walls have 
a higher resistance than thick ones and thus reduce the pressure drop, but the wall 
thickness is frequently restricted by structural requirements. 

If the direction of the flow or of the magnetic field can be changed, then the 
pressure drop can be reduced because the pressure gradient for fully developed flow 
is proportional to the square of the magnetic field component which is perpendicular 
to the direction of the flow. For a liquid-lithium coolant flow inside a magnetic- 
confinement fusion reactor, Hoffman & Carlson (1971) propose the alignment of the 
ducts with the magnetic field lines, so that the pressure gradient is reduced to that 
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for laminar ordinary hydrodynamic (OHD) flow. If the angle between the duct's 
centreline and the local magnetic field is a, the wall conductance ratio for the metal 
walls is c and the Hartmann number is M ,  then the ratio of the pressure gradient for 
fully developed MHD flow to that for OHD flow is comparable to CM2sin2a. For 
fusion reactor lithium coolant flows, typical values of c and M are 0.01 and lo4, 
respectively. Therefore, the MHD pressure gradient is only less than the OHD one 
for a < 0.06". I n  a real design, such a perfect alignment would be difficult to achieve. 
Achieving alignments within, say, 5" would be a more practical design goal. For 
a = 5", the MHD pressure gradient is roughly lo4 times the laminar OHD one, but 
is 0.01 times the MHD pressure gradient for a = 90". 

Several recent designs for the liquid-lithium cooling systems in Tokamaks have 
reduced the overall pressure drop by making all high-velocity flows nearly parallel to 
the magnetic field lines (Malang et al. 1988; Smith et al. 1985). A Tokamak is a 
magnetic-confinement fusion reactor with a toroidal geometry. In the region of the 
liquid-lithium flow, there is a toroidal magnetic field B, due to the magnet coils 
around the torus and a poloidal magnetic field B, due to the electric current in the 
plasma. Here, the toroidal and poloidal directions are around the large and small 
circumferences of the torus, respectively. I n  a typical design, B, = O.lB,, so t'hat a 
liquid-lithium flow in the toroidal direction is nearly parallel to the magnetic field 
lines, while a flow in the poloidal direction is nearly perpendicular to the field lines. 
Coolant flows in the toroidal direction completely around the large circumference of 
the torus would minimize the pressure drop, but maintenance requirements dictate 
that  the reactor be composed of a large number of independent, wedge-shaped 
segments which can be removed through the space between two adjacent magnet 
coils. 

In the design for the blanket comparison and selection study (Smith et al. 1985), 
the coolant ducts close to the plasma are short, toroidal ducts with a large liquid- 
metal velocity. A large coolant velocity is necessary close to the plasma because the 
energy deposition rate is large here. The pressure drop is acceptable in spite of the 
large velocity because the ducts are nearly parallel to the magnetic field. Further 
from the plasma, there are large poloidal ducts which feed cooler liquid to the 
toroidal ducts and carry hotter liquid away from them. The velocity in these poloidal 
ducts can be much smaller because the energy deposition here is very small, so that 
the pressure drop is acceptable in spite of the large transverse magnetic field 
component for poloidal ducts. At the end of the blanket comparison and selection 
study, important questions about the three-dimensional flow near the junction of a 
poloidal and toroidal duct remained unanswered and appeared to be critical for the 
feasibility of this and similar designs. In  particular, there was no reliable estimate of 
the extra pressure drop associated with the sharp elbow between two ducts, one 
nearly parallel and the other nearly perpendicular to the magnetic field, and there 
was no reliable prediction of the three-dimensional flow distribution in a region with 
a high energy deposition rate. 

The present analysis captures the essential physics of the junction of a poloidal 
duct and a toroidal duct in a Tokamak coolant system in the context of a basic 
problem in liquid-metal magnetohydrodynamics with relevance to other tech- 
nological applications. We treat the flow in a sharp elbow composed of two semi- 
infinite, constant-area, rectangular ducts with one end bevelled a t  45" and joined to 
form a 90" mitre corner. There is a uniform magnetic field in the plane of the 
centrelines of the two ducts. The analysis applies for any angle between the magnetic 
field direction and the duct centrelines. However, results are only presented for a 
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magnetic field a t  angles of 84.29" and 5.71" to the centrelines of the upstream and 
downstream ducts, corresponding to the poloidal and toroidal ducts, respectively, 
with B, = O.lB,. For a strong magnetic field, inertial effects are negligible so that 
solution applies as well for flow in the opposite direction. 

Hunt & Holroyd (1977) present a qualitative discussion of the flow in an elbow in 
the plane of a uniform magnetic field. Their discussion is based on the asymptotic 
solutions for flows in non-uniform magnetic fields presented by Holroyd & Walker 
(1978). Hunt & Holroyd conclude that the flow becomes concentrated into jets with 
a large region of stagnant liquid, as one duct approaches alignment with the 
magnetic field. Subsequently, Hunt developed an order-of-magnitude estimate for a 
sharp elbow with a perfect alignment for one duct (cited by Holroyd 1980). Hunt 
concludes that the flow in the aligned duct is confined to a thin region with O(N-4) 
dimensionless thickness, where N is the interaction parameter which is typically 
104-105 for a fusion reactor cooling system. The fluid outside this thin region is 
stagnant. The flow region spreads very slowly across the cross-section of the aligned 
duct as we move away from the elbow, so that the velocity outside this region 
remains small for a long distance. The pressure drop predicted from Hunt's order-of- 
magnitude estimate (Holroyd 1980) is acceptable for the Tokamak cooling system 
(Holroyd & Mitchell 1982; Smith et al. 1985), but the flow pattern would be 
unacceptable for the local heat transfer. If the flow from the poloidal duct does not 
fill the toroidal duct and there is stagnant liquid near the plasma, then the local 
temperature would become unacceptably high. The discussion of Hunt & Holroyd 
(1977) and Hunt's order-of-magnitude estimate are both based on the asymptotic 
solutions of Holroyd & Walker (1978) for c 4 1, where c is the wall conductance ratio 
which is typically 0 .014 .1  for fusion reactor lithium cooling systems. 

Recent experiments a t  Argonne National Laboratory have indicated that an 
asymptotic analysis for c Q 1 is not appropriate for fusion reactor cooling systems 
with c = 0.01-0.1 (Picologlou et al. 1986). Reflection upon the analysis of Holroyd & 
Walker (1978) reveals that it assumes that A, ci 4 1,  where A, is an eigenvalue which 
is 10.6 for the circular pipes treated by Holroyd & Walker. Even for c = 0.01, A,ci 
is greater than one, so that the asymptotic analysis does not apply. In  particular, the 
asymptotic analysis predicts three-dimensional flow concentrations in small fractions 
of the duct's cross-section, with large regions of stagnent liquid, while real flows with 
c = 0.01 do not involve such severe flow distributions (Reed et al. 1987). Even though 
c = 0.01, we must keep c as a specifiable parameter in models for liquid-metal 
magnetohydrodynamic flows in ducts with metal walls (Talmage & Walker 1988). 

Moon & Walker (1988) present the first analytical model for liquid flow through an 
elbow in the plane of a uniform magnetic field. They treat the flow in two straight 
ducts connected by a gradual elbow with a large radius of curvature. For an 
extremely large radius of curvature, the flow is locally fully developed a t  each cross- 
section, and there is no additional pressure drop associated with three-dimensional 
effects. For a moderately large radius of curvature, the flow deviates from fully 
developed with a decrease in velocity near the centre and an increase near the walls 
which are parallel to the magnetic field. There is also a significant three-dimensional 
pressure drop. Unfortunately, the analysis of Moon & Walker (1988) cannot be 
extrapolated to a radius of curvature which is comparable to the cross-sectional 
dimensions of the duct. If we attempt such an extrapolation, the analysis predicts 
unrealistically severe flow distributions and unrealistically large three-dimensional 
pressure drops. A quite different model is needed for an elbow with a small radius of 
curvature or for a sharp elbow. Here we treat the flow in a sharp 90' elbow, but the 
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analysis applies equally well for two straight ducts connected by a small-radius 
elbow. Only minor details in the finite-difference solution presented in $4 are 
different for the small-radius elbow. 

In $2, the three-dimensional problem is reduced to a problem involving four 
coupled two-dimensional functions : the electrical potential functions in three walls 
and the pressure in the bulk of the liquid metal. There are three axially sequential 
sectors in the geometry and different solution techniques are appropriate for different 
sectors. A separation of variables solution for the first and third sectors is presented 
in $3. This solution is also a quite general solution for any three-dimensional flow in 
a constant-area, rectangular duct in a skewed, uniform magnetic field. Previous 
analyses for three-dimensional liquid-metal duct flows with strong magnetic fields 
have all assumed a symmetry about a plane which is perpendicular to  the magnetic 
field, except the analysis of Moon & Walker (1988). The solution presented in $3  
reveals that such symmetric flows represent a very singular case. With even a slight 
deviation from this perfect symmetry, the mathematical characteristics of the 
solution are quite different. The present solution is the first full solution for a three- 
dimensional magnetohydrodynamic flow which is not symmetric about a plane 
normal to the magnetic field. A finite-difference relaxation solution for the second 
sector and the coupling with the first and third sectors are presented in $4, The 
results for c = 0.01-1.0 are presented in $5.  Our objective is to treat a basic problem 
in magnetohydrodynamics, so we consider values of c beyond those arising in fusion 
reactor cooling systems. The results show that the flow distribution is not particularly 
severe for any case considered and that the flow becomes fully developed in a short 
distance on both sides of the elbow. The additional pressure drop due to three- 
dimensional effects is also presented. 

2. Problem formulation 
We treat a liquid-metal flow in a metal duct with a strong, uniform, applied 

magnetic field, Bog, where B, is the magnetic flux density, and i, 9,z  ̂are unit vectors 
for Cartesian coordinates. The electric currents in the liquid metal and in the metal 
duct walls create an additional, induced magnetic field, which can be neglected if the 
magnetic Reynolds number, R, = pLp aU,L < 1.  Here ,up and u are the magnetic 
permeability and electrical conductivity of the liquid metal, while U, and L are the 
characteristic velocity and length. With this assumption, the dimensionless equations 
governing the steady flow of a liquid metal with constant properties are 

N - l ( v . V ) v  = -Vp+jxy^+M-2V2v,  

j = - V $ + v x y ^ ,  V . v = O ,  V . j = O .  (1  b - 4  
Here 8, p ,  j and Q, are the fluid velocity, pressure, electric current density and electric 
potential function, which are normalized by U,, uU, Bi L,  uU, B, and U, B, L ,  
respectively. The interaction parameter and Hartmann number are 

N = u B ~  L/pUo, M = B, L(u/p) i ,  

where p and p are the density and viscosity of the liquid metal. For a sufficiently 
strong applied magnetic field, N % 1 and N 9 1, so that the inertial and viscous 
terms in the momentum equation (1 a)  can be neglected except in thin boundary and 
interior layers where velocity gradients become large. 

The present geometry consists of two identical, semi-infinite, constant-area, 
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FIQURE 1. Vertical section of a sharp elbow in the plane of a uniform magnetic field. There are 
sides with dimensionless thickness T, at z = f 1 .  Here 0, = B , - 9 0 °  for a 90' mitre corner. 

rectangular ducts with one end bevelled at 45" and joined to form a 90" sharp mitre 
corner, as shown in figure 1. The top and bottom walls of both semi-infinite ducts are 
parallel to the z-axis, are separated by a dimensionless distance a and have a 
dimensionless thickness T. The angle between the x-axis and the downstream top or 
bottom is ed, where 45' < 8, < go", while the angle between the x-axis and the 
upstream top or bottom is 6, = 6,-90', where -45" < 6, < 0'. The other pair of 
walls are the sides which are parallel to the magnetic field, which have a dimensionless 
thickness T, and which have inside surfaces at z = & 1, because L is half the distance 
between the sides. The flow is symmetric about the plane midway between the sides, 
so that we need only treat the flow for - 1 < z < 0, with appropriate symmetry 
conditions at z = 0. 

Following Shercliff (1956), we assume that T, 4 1, so that the boundary conditions 

where c, = u,,, q / u  is the sidewall conductance ratio, u, is the electrical conductivity 
of the metal duct walls, and #,(x,y) is the electric potential function in the side, 
which is independent of z neglecting O(T,2) terms. Similarly we assume that T 4 1, so 
that the boundary conditions at the bottom walls are 

where c = uwT/u is the wall conductance ratio for the top or bottom, y = fb(x) = 
x tan 6 is the location of the inside surface of the bottom, and #b(x, z )  is the electric 
potential function in the bottom wall, which is uniform through the wall thickness 
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neglecting O(T2) terms, while 8 = 8, for x > 0 and 8 = Ou for x -= 0. The boundary 
conditions a t  the top walls are 

u = o  (4a) 

where y = ft(x) = xtane+asece  is the location of the inside surface of the top 
wall and 4Jx,z) is the electric potential function in the top wall, while 8 = 8, for 
x > x0 = a(cosO,-sin8,) < 0, and 8 = eU for x < x0. 

We choose the average velocity parallel to the centreline of either semi-infinite 
duct away from the junction as U,, so that the dimensionless velocity must satisfy 
the volume flux condition 

( 5 )  

a t  each x = constant section, where u = u9 + wj+ w9. The condition (5 )  scales the 
solution of the homogeneous boundary-value problem (1-4). 

1,  there are two interior or free shear layers which completely 
span the flow a t  the x = xo and x = 0 sections. Hunt & Leibovich (1967) show that 
the characteristic dimensionless thickness S of such interior layers is M-4 if N & & or 
N-4 is N 4 i@. The two interior layers separate three axially successive sectors of the 
geometry. With the present coordinate system which is oriented with the applied 
magnetic field, sector 1 for x < x,, and sector 3 for x > 0 represent constant-area, 
rectangular ducts in a skewed magnetic field, while sector 2 for xo < x < 0 represents 
an asymmetric expansion. In  each sector, there is an inviscid, inertialess core region 
which is separated from the top and bottom walls by Hartmann layers and from the 
sidewall by a side layer. The Hartmann layers have an O(M-') dimensionless 
thickness and their local, exponential structure is well known. They match the core 
solution and satisfy the conditions (3a, 4a), provided the core variables satisfy the 
Hartmann condition 

neglecting O(M-') terms. Again, 8 switches from Ou to 8, a t  x = 0 for the bottom wall 
and a t  x = xo for the top wall. Walker, Ludford & Hunt (1972) show that the jumps 
in the electric potential function and in the normal component of the electric current 
density are 0 ( M p 2 )  and O(M-') across a Hartmann layer, so that the conditions ( 3 b ,  
4b) can be applied to the core variables neglecting O(M-') terms. 

For the core regions in all three sectors, the solution of (l) ,  neglecting the inertial 

Io-, u(x ,  Y, 2 )  dz dY = a, 

For M D 1 and N 

w = taneu, a t  y = fb ,  y = ft ,  (6% 6 )  

where pc(x, z )  and gc(x, z )  are integration functions and the subscript c denotes a core 
variable. When the conditions ( 3 b ,  4b ,  6 )  are applied to the core variables ( 7 ) ,  they 
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yield four equations governing #t, #b, p, and gc, which are only functions of x and z. 
The resultant equations are different for different sectors. For the core regions in 
sectors 1 and 3, we obtain 

jyc = a-1 cos 8 (#b - #,I, (8 e )  

where 8 = 8, for sector 3 and 19 = 8,, for sector 1. For the core in sector 2, g, is again 
given by (8a )  with 8 = OU, and 

jyc = cos8,(#,-#,)/(a+xcosec€Jd), ( 9 4  

where 8, is used throughout sector 2 to avoid the confusion of different 8 for the top 
and bottom walls. The purpose of introducing both 8, and OU is to reduce the 
boundary-value problems for sectors 1 and 3 to the same problem for an arbitrary 
8. The symmetry conditions are 

#t = 0,  #b = 0,  apC/az = 0 at z = 0. (1Oa+) 

The velocities in the interior layers a t  x = xo and at  x = 0 are a t  most O ( l ) ,  i.e. 
there are no large, O(S1) velocities inside these layers. Neglecting O(S) terms, all 
variables are continuous across the interior layers except w and w, and the role of 
these layers is to match discontinuities in w and w between adjacent core regions. 
Therefore, #t, #b, p, and app,/ax are the same in cores 1 and 2 a t  x = xo and are the 
same in cores 2 and 3 a t  x = 0. The continuity of u, andj,, imply the continuity of 
ap,/ax. In  addition, the interior layers cannot accept any O( 1) electric current from 
the top or bottom walls, so that the currents along these walls must be continuous 
a t  x = xo and x = 0. This continuity of electric currents in the top and bottom gives 
the matching conditions 

% = a ax ax ax ax 
coSeu- W t I  - - case,- W t 2  a t  x = xo, 

where the numerical subscript denotes the sector. 
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Like the interior layers, the side layers in all three sectors have a dimensionless 
thickness 6 which is N-S if N 4 M‘1 or M-i if N $ &a. For either case, usL and vsL are 
OW’) ;  AL, wsL, jzsL and j,,, are o(1) ; while 

P = P , ( X ,  - - 1 ) + ~ P S L ( X , Y , 5 ) ?  

where y = 6-l(z+ 1)  is the stretched side-layer coordinate and the subscripts SL 
denote the leading term in the asymptotic expansion for a side-layer variable. If 
6 3 c,, i.e. if we assume that c, is an O( 1) parameter, while N % 1 and M % 1, then the 
condition ( 2 h )  becomes an equation governing the electric potential function $,(x, y )  
in the sidewall, 

With 6 < c,, we can solve for the core variables and wall potentials without obtaining 
a detailed solution for the side-layer variables, but several characteristics of the side 
layers arc important. Since usL is O(F1), the volume flux inside the side layers is 
comparable to that in the cores. The O(6-’) terms in the z-component of Ohm’s law 
(1 b )  give usL = a$,,/a<, so that the volume flux in a unit Ay of a side layer is 

lom USL(X, Y, 5) dY = q5& Y? - 1) -A&, Y). (13) 

Therefore, the solutions for q5t, $b and q5s determine the volume flux inside the side 
layer without the solution for usL. In other words, the difference in electric potential 
between the core and side determines the total flow inside the side layer, whether 
inertial or viscous effects dominate for N 4 A$ or N % &, respectively. When the core 
solution ( 7 4  and the integral (13) are introduced into the volume flux condition (5 ) ,  
this condition becomes 

The condition (14) guarantees that the solutions for $s and p ,  are compatible with 
the side-layer boundary-value problem, so that the latter can be ignored if the 
condition (14) is satisfied. For N $ &, the side-layer solution is given by an extension 
of the separation of variables solution of Hunt (19651, but no solution for a side layer 
with N 3 ik6 has been published to date. 

Since j,,, is 0(1), the total current between the side layer and the adjacent 
segment of the top or bottom is 0(6 ) ,  while the variation of $t and q5b over the 
thickness of the side layer is O(6). Therefore, the electric potential must be 
continuous at the corners, y = fb, z = - 1 and y = ft, z = - 1. I n  addition, the electric 
current entering a corner from the side must equal the electric current entering the 
top or bottom from that corner, because the TT, cross-sectional area of the corner is 
too small to carry significant axial current. For sectors 1 and 3, the continuity of 
potential and current requires that 
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I 

where 8 = 8, for sector 3 and 8 = 8, for sector 1 .  For sector 2 ,  the conditions (15a, 
b )  apply with 8 = 8, = 8,-90°, and the conditions (15c, d )  apply with 8 = 8,. 

The interior layers at x = xo and at x = 0 cannot accept any O(1) current from the 
side, so that $, and a$,/ax are continuous at  x = xo and x = 0. The two-dimensional 
variables pc, $t, $b and q5* are governed by equations (8), (9), ( 1 2 )  and by the 
conditions (lo), ( la),  (15) in each of the three sectors. The solutions in different 
sectors are coupled by the continuity of $t, $b, p,, $,, ap,/ax and a$,/ax at x = xo and 
a t  z = 0, as well as by the matching conditions ( 1 1 ) .  The separation of variables 
solution for sectors 1 and 3 is presented in $3, while the finite-difference solution for 
sector 2 and the Galerkin-conservation integral coupling at  x = xo and x = 0 are 
presented in $4. 

3. Three-dimensional flow in a constant-area duct with a skewed magnetic 
field 

The solution for sectors 1 and 3 is also a general solution for any three-dimensional 
flow in a constant-area, rectangular duct with its centreline at  an arbitrary angle 
(90"-8) to the direction of a uniform magnetic field. The equations (8), (12) and 
symmetry conditions (10) are satisfied by the separation of variables solutions 

2cKx 
p, = C o - a +  C,exp (-A,x) [A,  cos ( A ,  cos8z) +B,  cosh (a ,  z ) ] ,  (16a) 

n-1 

2B, sinh (a, z )  
can sin 8 

00 

$t - g5b = C C, exp ( -A, x) aAm tan BA, sin (A ,  cos 82) + 
n-1 

00 

$s = -K[1+ccos28Y(asec8-Y) /a2]+ C, C,exp(-A,x) 
n-1 

x {[A,cos(~,cos8)+B,cosh(a,)]/~,c,+exp(-~ncos8sinBY) 

x [D, cos ( A ,  cos2 BY) + E n  sin ( A ,  cos2 OY)]}, (164  

where K = cos 8/( 1 + 2c/a + ac/6c,), a,, = (2/ac - A:);, and Y = y - x tan 8. The terms 
before the summations in the solutions (16) represent fully developed flow in this 
constant-area duct. For each n, the constants in p,, ($t-$b) and $s are expressed as 
multiples of C,, the constant in ($t + $b). Here, A ,  is a set of discrete eigenvalues, the 
terms after exp ( -A,  z) in the expressions (16) are the corresponding eigenfunctions 
with the constants A,, B,, D ,  and En, and the constants C ,  are the coefficients of the 
eigenfunctions for each A,. 

When we introduce the solutions (16) into the conditions (la), (15), we obtain five 
coupled equations which are linear in A,, B,, D ,  and En. These five equations are 
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reduced to explicit expressions for A, ,  B,, D ,  and En,  and to a transcendental 
characteristic equation for the eigenvalues A,, 

where 

[2aA, sin O(acai tan OR, -R2) + 2R,/c + a: sec OR,/A,] 

x cos ( A ,  cos 8) sinh (a,)/a, + 2 sec OR,(cos OR,/A, - aR,) 

x cos ( A ,  cos 8) cosh (a,)/c, A,  +c,[aA, sec OR, R,/c 

+ aa4, R, RJA, - 2ac, A,  sec 8R, R, tan ( A ,  cos i3)/c2 

+ 4aR,/c2] sin ( A ,  cos 0) sinh (a,)/a, + [R, -A ,  R, R, 

+ 2a sec 8(sin OR, + 2 cos OR,) + a sec OR, R,/cA, 

- 2ac,(cos2 8R, +A,  R, R3) tan (A, cos O ) / c ]  

x sin ( A ,  cos 8) cosh (a,) = D(a, c ,  c,, 8, A,) = 0, (17) 

(18a) 

R, = 1-exp(-2ahnsinO), R, = atanesinO, ( 1 8 h  c )  

( 1 8 4  

(18e) 

(18.f 1 
(W) 
(18h) 

R, = exp (-ah, sin 0) sin (ah, cos 8) ,  

R, = 2 -ad: sin2 8, 

R, = 1 - 2 exp ( - ah, sin 0) cos (ah, cos 8) + exp ( - 2aA, sin 8) ,  

R, = R, + 4 exp ( -ah, sin 8) cos (ah, cos O ) ,  

R, = 2a sin O( cos OR, - 2 sin OR,), 
R, = 2(sin OR, + 2 cos 8R,)/A, -aR,. 

The rather complicated explicit expressions for A,, B,, D, and En from the 
conditions (14), (15) are not presented here, but are presented by Moon (1989). Once 
we find an eigenvalue A,  which satisfies the characteristic equation (17), these 
expressions give the corresponding values of A,,  B,, D, and En,  so that everything 
is known for this eigenvalue except the coefficient C,. 

For each set of values for a, c ,  c,  and 0, there is an infinite set of discrete eigenvalues 
A, which satisfy the equation (17). A duct in a perfectly transverse magnetic field 
with O = 0 is a very singular case. For O = 0, all eigenvalues are real and are 
symmetric about the double root A, = 0, corresponding to fully developed flow. The 
eigenfunctions separate into : (i) even modes with $t = $b and q5, as an even function 
of (y-h),  and (ii) odd modes with q5t = -q5,,, p ,  = 0 and q5s as an odd function of 
(y-h).  To illustrate the evolution of the eigenvalues as 8 begins to deviate from 
zero, we consider a typical case with a = c = c, = 1.  For this case with i3 = 0, there 
are no double roots except A, = 0, but the eigenvalues include certain pairs which are 
very close to 2nm, for m = 1 , 2 , 3 , .  . . . Each of these pairs consist of an even mode and 
an odd mode. As we begin to increase or decrease 0 from zero, these pairs begin to 
come together on the real axis and then branch into pairs of complex conjugates in 
the complex A plane. The transition to complex conjugate eigenvalues begins with 
the pairs near large multiples of 2x and moves successively to the pair near 2x as the 
magnitude of 8 increases. However, all of these pairs have become complex before 
181 = lo. Therefore, a duct with a perfectly transverse magnetic field and 8 = 0 is avery 
special case with all real eigenvalues. For a very slight misalignment with O = & lo, 
a significant fraction of the eigenvalues are complex conjugates. Previous studies of 
three-dimensional liquid-metal flows in strong magnetic fields have all assumed that 
the flow is symmetric about a plane which is perpendicular to the applied magnetic 
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field. The present results show that such symmetric flows represent special cases and 
that realistic flows with even slight misalignments have quite different mathematical 
characteristics. 

As 101 increases beyond lo, other pairs of real eigenvalues come together on the real 
axis and branch into complex conjugates. The search over the complex A = A,+& 
plane for a given 8 is facilitated by certain eigenvalue patterns. Since complex 
eigenvalues always occur as complex conjugates, we need only search the upper half 
plane, A, 2 0. All eigenvalues lie either on the real axis or along a single curve in each 
quadrant of the complex plane. The curve in the first or fourth quadrant approaches 
a straight line away from the origin. The complex eigenvalues approach an equal 
spacing along each curve. 

For a given set of values for a, c,  c, and 8, we first find the real eigenvalues. We 
compute the real values of D given by (17) a t  successive real values of A. When D 
switches signs, we have passed an eigenvalue, and a modified Newton-Raphson 
method quickly converges to that eigenvalue. For A, > 0, D = D, + iD,, so we begin 
by plotting rough curves for D, = 0 and Di = 0 in the first or fourth quadrant. The 
intersection of a D, = 0 curve and a Di = 0 curve indicates the neighbourhood of a 
complex eigenvalue. Since the complex D given by (17) is a regular function of the 
complex variable A,  a simple complex Newton-Raphson scheme determines the 
complex eigenvalue to 15 significant figures in less than 8 iterations once the 
approximate neighbourhood is known. Once the preliminary search with rough 
sketches of the D, = 0 and D, = 0 curves has identified the first four eigenvalues in 
one of the quadrants, then the single curve for the complex eigenvalues and their 
spacing along this curve are easily identified. Therefore we can estimate the 
neighbourhoods for all successive complex eigenvalues in that quadrant without 
plotting curves. Some eigenvalues for a = c = c, = 1, 0 = 84.29' ( tan0 = 10) and 
A, > 0 are: 3.576, 4.918f4.623i, 6.489, 7.006+11.01i, 8.474k17.381, 9.579, 
9.681 f 23.71i, 10.75 f 30.00i, 11.74 2 36.283, 12.67 42.55i, 12.71, 13.56 f 48.813, 
14.42+55.07i, 15.26261.33i, 15.71, 15.93, 16.08f67.58i. For this case, successive 
complex eigenvalues approach spacing along a straight line with AA, = 0.82 and 
Ahi = 6.25. We number the eigenvalues by increasing magnitude of A,, corresponding 
to increasingly rapid spatial decay in x for the solutions (16). For sector 3, we keep 
only the eigenvalues with A, > 0 for 8 = 8,, and for sector I ,  we keep only the 
eigenvalues with A, < 0 for 0 = BU. Once we have determined the eigenvalues which 
satisfy the characteristic equation (17) and the corresponding values of the 
coefficients A,, B,, D, and En,  everything in the solutions (16) is known for sector 
1 or sector 3 except the coefficients C, which are determined by the coupling a t  
x = xo or a t  x = 0, respectively. 

4. Solution for sector 2 and coupling with sectors 1 and 3 
A separation of variables solution is not possible for sector 2 because several 

coefficients in the equations (9) are functions of x and because the domain for (12) is 
a trapezoid. We use a finite-difference relaxation method to solve the equations (9), 
(12) and the conditions (lo), (14), (15) with the values of p , ,  q5t, $,, and q5, a t  z = zo 
and a t  x = 0 treated as known values. For the side, the first row of grid points lies 
along the intersection with the bottom, and subsequent rows are parallel to the 
bottom. For integer values of tan 0,, certain uniform spacings between rows lead to 
grid points along the intersection with the top wall. Each successive row which meets 
the top wall has one less grid point. We use the same x positions for the core and side, 
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and we stagger the grid in z for the core. Grid points for $t and $b are a t  z = - 1 + j 
(Az), while points for p ,  are at - 1 + ( j+0 .5 )  Az, for j = 0,1,2,  . . . . The staggered grid 
is introduced because of the mix of even and odd derivatives with respect to z in 
equations (9). We integrate equations (9) and (12) over appropriate cells for each grid 
point. The cells are rectangles for the core and parallelograms for the side. The line 
integrals over parts of the cell boundary and area integrals over the cell are 
evaluated with truncated Taylor series with coefficients expressed in terms of 
neighbouring grid values. For the potential values along the intersection between the 
top or bottom and the side, we combine the integral of (9b, c) over half cells in the 
top or bottom with the integral of (12) over partial cells in the side. Near the top or 
bottom, these partial side cells are triangles or parallelograms, respectively. The 
combination of partial cell integrals in the top or bottom and side, leads to line 
integrals along the intersections of exactly the boundary conditions (15b, d ) .  

In the relaxation scheme, we compute values at x = xo + kh, for k = 1,2 ,3 ,  . . . , to 
x = - h ,  where h is the axial grid spacing. At  each x, we solve for the core values from 
z = - 1 to z = 0 and then solve for the side potentials. For the core, we solve 
simultaneously for three values : $t and $b a t  a point and p ,  at the point 0.5Az away. 
This simultaneous solution for three core values is used because solutions are desired 
for values of c as small as 0.01. If one value of p ,  is the only unknown in the 
differenced form of (9a), one value of gb is the only unknown in (9b) and one value 
of$, is the only unknown in (Sc), then the truncation error is h2/c. If the three values 
ofp,, $b and $t are unknown in each of the equations (9a, b,  c),  and if the three values 
are determined simultaneously in terms of the values at the surrounding grid points, 
then the truncation error is h2 for any value of c (Hua et al. 1988). This simultaneous 
relaxation scheme works quite well for c = 0.001 and h = 0.1. 

For the coupling at x = xo, we truncate the eigenfunction series (16) after the n = 
(Nl- 1) terms, so that there are Nl unknowns for sector 1, namely C, for n = 0 to 
(N1 - 1) .  The N2 values of p, ,  $b, $t and $* in sector 2 at the grid points at x = xo are 
also unknown, and we solve simultaneously for the NT = (Nl +N2) unknowns 
associated with the coupling at x = xo. We use two types of linear, simultaneous 
equations to determine the NT unknowns. First, we use a Galerkin method to 
minimize the difference between the values of p, ,  $b, $t and $, at x = xo from the 
separate sector 1 and sector 2 solutions. We define a residual 

where the subscript 1 denotes the sector 1 eigenfunction series (16) evaluated at  
x = xo and the subscript 2 denotes the sector 2 values at  the grid points at  x = xo. 
We minimize the residual with respect to the series coefficients with 

aE/BC, = 0 for n = 0 to (N1 - 1) .  (20) 

The equations (20) involve three types of terms. The first type of term involves one 
of the coefficients C ,  times the sum of four integrals of products of the eigenfunctions 
in the series (16). Three integrals involve the eigenfunctions for p,, #b and q5t, 
integrated from z = - 1 to z = 0, and the fourth integral involves the eigenfunctions 
for $, integrated from y = fb to y = ft. These integrals are all evaluated analytically. 
The second type of term involves the sum of four integrals of an eigenfunction and 
a sector 2 solution at  x = xo. Since the sector 2 solution is only represented by the 
values at  the grid points, we assume that each sector 2 value is constant over an 
interval centred at the grid point and we analytically integrate the eigenfunction 



Liquid metal flow through a sharp elbow in a magnetic field 409 

over the interval. These terms give known coefficients times the unknown values of 
pc2, q5b2, q5t2 and $,* at the grid points at  x = xo. The third type of term involves 
integrals of the eigenfunctions times the fully developed solution in the series (16) ,  
and these integrals are also evaluated analytically. The Galerkin matching of the 
values of p, ,  #,,, q5t and q5, a t  x = xo gives N1 linear, simultaneous, inhomogeneous 
equations with NT unknown values of the coefficients C, and of the sector 2 grid 
values a t  x = xo. 

Equation (9a )  ensures the conservation of mass for the core solution (7). When we 
integrate this equation over the cell centred at x = xo + kh and z = - 1 + (j+ 0.5)  (Az), 
we are ensuring the conversation of mass for a rectangular prism which extends from 
y =fb to y = ft and which has a cross-sectional area of h(Az). The sector 2 relaxation 
scheme ensures conservation of mass for all such prisms between x = xo+0.5h and 
x = -0.5h. Similarly equations (9b) ,  (9c) and (12) ensure conservation of electric 
current in the bottom, top and side, respectively, so that their differenced forms 
ensure the same conservation for appropriate segments of each wall between x = 
x0+0.5h and x = -0.5h. We must also ensure that mass and electric current are 
conserved in the interval xo < x < xo +0.5h. We integrate ( 9 )  and (12) over half cells 
adjacent to the junction a t  x = xo. The line integrals along the cell boundaries are 
evaluated from Taylor series as before, except the integral along the boundary a t  
x = xo. This integral involves the values of ap,,/ax, a q & / a X ,  i!@t2/ax and a$,,/& in 
sector 2,  evaluated at x = xo. Using the continuity of app,/ax and a$,/ax and the 
matching conditions ( l l a ,  b ) ,  the integrand is replaced by the values of apCl/ax, 
i3q5bl/ax, a$,,/ax and aq5,,/ax in sector 1 evaluated a t  x =  xo. Substituting the 
truncated eigenfunction series (16) into the line integrals along x = xo, the values of 
the integrals are analytically determined in terms of the unknown coefficients C,. 
The partial cells at the corners x = xo, y = f b  or ft and z = - 1 involve combinations 
of partial cells in the top or bottom and in the side which incorporate the continuity 
of electric current ( 3 b ) ,  (4b) at the intersection of the side and top or bottom for 
xo < x < xo + 0.5h. Therefore, the integrals of (9 )  and (12) over partial cells adjacent to 
x = xo lead to N2 simultaneous, linear equations in which the coefficients C, and the 
sector 2 values at the grid points at x = xo are unknowns and in which the values of 
p,, +b, dt and $, a t  the grid points a t  x = xo + h are treated as knowns. 

The N1 equations from the Galerkin minimization of the residual (19) match the 
values of p,, q5b, q5t and $, a t  the junction, while the N2 equations from the 
conservation integrals for partial cells match the axial derivatives a t  the junction. 
The (NT x NT) matrix of coefficients is inverted to give the values of C, for sector 1 
and the sector 2 values at the grid points a t  x = xo in terms of the fully developed flow 
at x = - co and the sector 2 values at the grid points at x = xo+  h. Therefore, the 
combination of the Galerkin method and the conservation integrals represents a 
global element which extends from x = - to to x = xo + 0.5h and which hasiVTdegrees 
of freedom. The matching between the sector 2 and sector 3 solutions a t  x = 0 is 
exactly the same, except that there are more unknown values of the side potential 
at the grid points at x = 0 for ed > 45". 

To begin the solution, we relax the sector 2 solution with fully developed flow 
values at x = xo and at x = 0, computed from the solutions (16) with C, = 0, for 
n 1 ,  and with Co compute from an average of the sector 1 and sector 3 fully 
developed pressure gradients for the length lxol of sector 2. After this initialization of 
the sector 2 values : (i) we update the sector 1 values of C, and the sector 2 grid values 
at x = xo, (ii) we sweep forward from x = xo + h to x = - h with the sector 2 relaxation 
scheme ten times, (iii) we update the sector 3 values of C, and the sector 2 grid values 
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a t  x = 0, (iv) we sweep backward from x = - h to xo + h with the sector 2 relaxation 
scheme ten times, and (v) we repeat steps (i)-(iv) until the values of C ,  for sectors 
1 and 3 and the sector 2 grid values for xo < x < 0 have all converged. Since a 
constant pressure Co is included in both the sector 1 and sector 3 solutions (16), the 
arbitrary reference pressure is fixed by setting the pressure a t  one grid point in the 
interior of sector 2 equal to zero. 

5. Results 
There are two different fully developed flows far upstream and downstream of the 

elbow. The uniform core velocity parallel to the duct’s centreline is the same in both 
fully developed flows, 

v,, = (1 + 2c /a ) / (  1 + 2c/a + ac/6cS). 

This core velocity and the transverse component of the magnetic field, B, = cos8, 
produce an induced electric field in the z-direction, vl, cos 8, which represents the 
‘battery ’ for the electrical circuit. This battery drives electric currents through the 
liquid metal, sides and top or bottom, which are electrical resistances in series. The 
electric circuit is confined to cross-sections of the duct with positive and negative j, 
in the core and top or bottom, respectively. The flow is symmetric about the plane 
midway between the top and bottom, so that the electric potentials of the top and 
bottom are the same andj,  =jv = 0 in the core. The electric potentials and current 
densities are proportional to cos 6, and cos 8 d  for the upstream and downstream fully 
developed flows, respectively, where cos 8, = 10 cos 6, for the present duct. 

Sector 2 and the disturbed portions of sectors I and 3 represent an electrical 
conductor placed between the two fully developed flows. In this three-dimensional 
flow, the strong upstream battery, vl, cos B,, sees two electrical circuits in parallel : one 
through the sides and top or bottom in each cross-section and one with axial currents 
in the liquid metal and ducts walls in the fx-direction for z 2 0. Downstream, the 
axial currents from the strong upstream battery overwhelm the weak downstream 
battery, oil cos 8d, so that j, in the core becomes negative for parts of sectors 2 and 3. 
This negative j, completes the circuit for the axial currents from the upstream 
battery. Therefore, the three-dimensional current circulation is roughly given by the 
superposition of a current circulation in each cross-section and a three-dimensional 
current circulation in the disturbed region with j, 8 0 for z 2 0 and with j, > 0 
upstream and j, < 0 downstream. Upstream, the three-dimensional j, augments the 
cross-sectional j,, while downstream the former overwhelms the latter, giving a net 
negative j,. 

Equations (7a ,  c )  indicate that the core pressure pc(x, z) serves as a streamfunction 
for j,, and jzc, the components of the electric current density in the planes 
perpendicular to the magnetic field. For a = 1.0 and c = c, = 0.1, plots of p, versus 
x for z = 0, -0.85 and - 1.0 are presented in figure 2. The upstream and downstream 
fully developed pressures, which are linear in x and independent of z, are achieved for 
x <-3.O and x >  0.3, respectively. In sector 1 for x <  xo =-0.896, the axial 
currents in the +x-direction for z 2 0 produce an EM body force toward the sides. 
Since this body force is balanced by ap,/az, the centreline pressure is lower than p, 
at z = _+ 1.  The vertical distance between the top and bottom curves in figure 2 is 
proportional to the total core current in the ---direction for - 1 < z < 0, divided by 
the vertical distance between the top and bottom, (ft-fb). Since the cross-sectional 
and three-dimensional transverse currents are additive upstream, the magnitudes of 
-ap,/ax are larger than that for the upstream fully developed flow in the disturbed 
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FIGURE 2. Core pressure p ,  for a = 1 and c = c, = 0.1. Plots of p ,  versus z for z = 0, -0.85 
and - 1.0. 

part of sector 1. In sector 2, the effective ‘battery’ strength decreases rapidly as the 
area in each x = constant plane increases, with corresponding decrease in u because 
of mass conservation. For x > -0.8, the three-dimensional j, overwhelms the cross- 
sectional j,, so that the net j, is negative. This negative j, completes the three- 
dimensional electric current circulation and produces a positive pressure gradient, 
ap,,ax > 0, throughout the core, except very near z = & 1. At the junction of sectors 
2 and 3 at x = 0, very little axial current remains and it completes its circuit in a 
short length of sector 3. The pressure at z = -0.85 is presented in figure 2 because 
p ,  as a function of z is very flat near z = 0 and rises rapidly near z = & 1. For flow in 
the opposite direction through this elbow, the centreline pressure would be higher 
than pc  at z = f 1 in the disturbed region and the pressures are obtained by reflecting 
the curves in figure 2 about the p = 0 line. 

To this point, the discussion of the pressures and electric currents applies 
qualitatively to many three-dimensional MHD duct flows between two different fully 
developed flows (see e.g. Hua et al. 1988). One special feature of the present geometry 
is its asymmetry about the y = 0 plane. Because of this asymmetry, a non-zero j,, 
implies a non-zero j,, and electric currents into or out of the top or bottom. The 
electric current density out of the top or bottom is equal to c times the Laplacian of 
the top or bottom potential on the wall surface, while j,, is equal to the difference 
between the top and bottom potentials, divided by the local vertical distance 
between the top and bottom. In sector 2, the three-dimensional current circulation 
involves j,, < 0 for z < 0. If sector 2 were a symmetric expansion, then q5t would 
equal q5b andj,, would be zero. In this case, some of the axial current would enter 
the top and bottom at each cross-section, would flow to z = - 1 in the top and 
bottom, would flow down or up the side and would then return to the core asj,, a t  
z = - 1. Thus axial current in a symmetric, variable-area section is vertically 
redistributed through the duct walls. No vertical redistribution is possible in the core 
itself because jyc = 0 (Walker 1981). The present sector 2 is a strongly asymmetric 
expansion: the top has a very steep slope of 10, while the bottom has a very small 

14 FLM 213 



412 T .  J.Moon and J .  S. Walker 

-3  -2 -1 0 1 
X 

FIQURE 3. Top and bottom electric potential functions at z = - 1 for a = 1 and c = c, = 0.1. 

slope of -0.1. The axial current j,, < 0 for z < 0 implies a large negative jyc, giving 
core current lines nearly parallel to the plane midway between the top and bottom 
at 8 = $(8,+Bd). Since j vc  is independent of y, some current enters the top and 
bottom at each cross-section and is vertically redistributed through the duct walls. 
The large negative j,, implies that q5b < q5t from (9d). The potential difference 
between the top and bottom and j,, are illustrated by the plots of q5t and #b at z = - 1 
for a = 1 and c = c, = 0.1 in figure 3. Only values at  z = - 1 are presented because 
q5t = 4 b  = 0 at z = 0, both are linear in z for fully developed flow and both are generally 
curved with small slope near z = 0 and large slope near z = - 1 for the disturbed 
regions. For fully developed flow q5t = q5b, and this is achieved for x < -2.5 and x > 
1.0. The value of j,, at z = - 1 is given by the vertical distance between the two 
curves in figure 3, divided by (ft-fb), which is much larger at x = 0 than at  x = x,,. 
Throughout sector 2, +b < g5t, so that jYc < 0. Currents in sector 2 are sketched in 
figure 4. In sectors 1 and 3, the potential difference decays with distance from the 
junctions as the circuit is completed for the three-dimensional electric current 
circulation. In sector 3, there is a damped oscillation of q5b, which reflects the fact 
that many eigenvalues for 0 = 84.29' have imaginary parts which are larger than 
their real parts. For a short distance in sector 3, q5b > q5t, but this does not represent 
any significant current with j,, > 0, since the vertical distance between the top and 
bottom is so large here. 

Equations ( 7 d , f ,  g )  indicate that u, and v, are linear functions of y, while the 
boundary conditions (6) relate v, and u, at the top and bottom. Therefore, the values 
of u, at y = fb and at y = ft determine the values of u, and v, everywhere, while the 
continuity equation ( l c )  then determines w,. The plots of u, a t  y =fb,  ft and at 
z = -0.05, -0.95, for a = 1 and c = c, = 0.1 are presented in figure 5 .  The values of 
u, are given in figure 5, rather than the values of the velocity parallel to the walls, 
vll, because u, is the only velocity which is continuous a t  x = xo and at  x = 0, and 
because vI1 represents two different directional velocities at  the top and bottom of 
sector 2. However, v, or vIl are easily obtained by multiplying u, with the tangent or 
secant of the appropriate angle. At the top, u, at z = -0.95 is larger than u, at 
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FIQURE 4. Sketch of electric currents in sector 2 for z < 0. Arrows along line a represent j,i+j,,f 
at a point (x , z )  near x = 0. These currents are independent of 3, so some current enters the top 
and bottom walls. The current entering the top or bottom flows to the junction with the side at 
z = - 1, flows down or up the side, flows back into the liquid metal asjzc(x, - 1) and finally turns to 
flow in the minus x-direction. These current paths are represented by the lines b and c. In  addition 
there is current entering from the other half of the duct as -jzc(x, 0), which also turns to flow in 
the minus x-direction (line d). The arrows along the line e represent j,,a+j,,f a t  an (x , z )  near 
x = zo. These arrows are larger than those at a because of the vertical current redistribution 
(lines b and c) and because of the current addition (line d). 

z = -0.05 throughout the disturbed region. As the flow approaches x = xo in sector 1, 
it migrates towards z = & 1. As the flow moves through sector 2, it maintains a higher 
velocity near z = 5 1 than at z = 0, but all values of u, decrease as the vertical 
distance (ft-fb) increases. Near z = 0, u, drops to roughly a quarter of the value in 
the downstream fully developed flow and then the difference between the velocities 
at z = & 1 and at z = 0 decreases as the three-dimensional current completes its 
circuit. In sector 3, the transverse difference in u, decays rapidly to zero. At the 
bottom, u, in sector 1 is very similar to that at  the top. In sector 2, u, does not 
decrease as fast at  the bottom as it does at the top, indicating that the flow is 
concentrated near the bottom in sector 2. This flow concentration near the bottom 
is associated with the large negative j,, in sector 2 for z < 0. With $t = $b = 0 at 
z = 0 and with $b < $t < 0 a t  z = - 1, a$,/& is larger than a$,/&. Since ap,/ax is the 
same a t  the top and bottom, ( 7 4  indicates that u, must be larger near the bottom 
than at the top. Therefore, this flow concentration near the bottom in sector 2 results 
from the potential difference associated with the three-dimensional electric current 
circulation. As the flow approaches x = 0 in sector 2, the bottom u, at z = -0.95 
drops below that at z = -0.05 and both exhibit a damped oscillatory decay to the 
fully developed value in sector 3. Although u, at the top at  z = -0.05 becomes quite 
small in sector 2, this is not the smallest velocity along the top or bottom. The 
velocity along the top wall for x > xo is ucsecBd, so that the velocity along the top 
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FIGURE 5. Plots of the core velocity u, at z = 0.05 and -0.95 for a = 1 and c = c, = 0.1 (a)  at 
the top wall at y =ft;  ( b )  a t  the bottom wall a t  y =f,. 

in sector 2 is nowhere less than 0.2U0. The minimum velocity along any wall occurs 
in sector 2 near x = 0 and z = - 1, where this velocity drops to roughly O.lUo. 

The results presented in figures 2 , 3 , 5  are for c = c, = 0.1. If c and c,  are larger than 
0.1, then the thicker walls allow more current to flow and the transition between the 
two fully developed flows involves less severe deviations from locally fully developed 
flow. If c and c, are smaller than 0.1, then the transition involves more severe 
deviations from locally fully developed flows. Plots of u, versus z at x = - 1 and a t  
y = fb are presented in figure 6 for a = 1 and for various equal values of c and c,. Since 
this is the value of u, a t  the bottom just inside sector 1, this is the velocity profile 
with the largest difference between the values of u, a t  z = 0 and at  z = - 1.  Even for 
c = c,  = 0.01, the velocity along the walls is nowhere zero or negative. 

The additional pressure drop due to the three-dimensional effects associated with 
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FIQURE 6. Plots of the core velocity u, at z = - 1 and at y = f b  for a = 1 and for c = c, = 0.01, 
0.02, 0.05, 0.1, 0.2, and 0.5. 
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FIGURE 7. Three-dimensional pressure drop for a = 1 and equal values of c and c,. Actual pressure 
drop equals ApSD plus the reference pressure drop given by the upstream and downstream fully 
developed pressure gradients for z < &o and x > ixo, respectively. 

c = c, 

the elbow is important for design calculations. A reference pressure drop between any 
two points far upstream and downstream of the elbow is defined as the pressure drop 
resulting from the upstream and downstream fully developed flow pressure gradients 
for x < tx,, and for 2: > $xo, respectively. The three-dimensional pressure drop, Ap3,,, 
is defined as the difference between the actual and reference pressure drops between 
the same two points far upstream and downstream. For a = 1 and equal values of c 
and c,, Ap,,, is plotted in figure 7. For c = c, > 0.35, Ap3,, < 0, which means that the 
reference pressure drop is larger than the actual pressure drop. Our reference pressure 
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drop is convenient to compute, but it does not represent the pressure drop for locally 
fully developed flow. Locally fully developed flow is difficult to define in sector 2 
because the boundary-value problem (equations (9), (lo), (12), (14), (15)) for sector 
2 does not admit solutions with a+/ax = 0 and a2p,/ax2 = 0. We might define the 
locally fully developed pressure gradient at  each cross-section of sector 2 as the fully 
developed pressure gradient for a duct with the local vertical height (ft-fb) and with 
parallel top and bottom at 8 = t(8,+8,). However, this definition leads to an 
expression which must be integrated numerically in order to obtain the locally fully 
developed pressure drop through sector 2. For computational convenience, our 
reference pressure drop uses the average of the upstream and downstream fully 
developed pressure gradients for sector 2. The locally fully developed gradient 
defined above decreases very rapidly as x increases from x,,, so it gives a smaller 
pressure drop than the reference pressure drop. The graph of Ap3D has a maximum 
of 0.06 at c = c, = 0.05. The asymptotic solution for c + 1 predicts that Ap3D is 
proportional to ci (Walker 1981), so that Ap3D should increase as c increases. This 
variation is clearly not valid for any c considered here, which confirms the statement 
that the small c asymptotic solution is not valid for c 2 0.01. For very large c,  the 
flow is nearly locally fully developed, corresponding to some negative Ap3D with our 
reference pressure. Therefore Ap3D must always have a maximum between the flow 
with very thin walls which make all pressure variations small and the flow with thick 
walls which make the flow locally fully developed. 

6. Conclusions 
The present predictions for the three-dimensional flow distribution differ 

dramatically from the previous predictions mentioned in 0 1. Hunt's order-of- 
magnitude argument (cited by Holroyd 1980) treats the sharp elbow with 8, = 0 and 
8, = go', i.e. with perfect alignment between the downstream duct's centreline and 
the magnetic field. Hunt's argument predicts that all the flow in the downstream 
duct is concentrated in a boundary layer with O(N-i) thickness, adjacent to the top 
which is located a t  x = -a  for 8, = 90'. The flow for -a < x < 0 is virtually 
stagnant, and the N-i layer spreads very gradually as we move along the downstream 
duct away from the elbow. The present analysis for 8, = 84.29" shows that there are 
no stagnant regions, even for c = c, = 0.01, and that the flow is actually concentrated 
slightly more near the bottom than the top in sector 2. The results would not be 
radically different for values of 8, closer to 90'. Hunt's argument assumes that the 
electric currents are small because they must flow through the thin metal walls and 
that the flow cannot cross the magnetic field lines in the downstream duct if the 
electric currents are small. These assumptions are based on the small c asymptotic 
solutions presented by Holroyd & Walker (1978). Based on the present arbitrary c 
solutions, we conclude that the thin metal walls permit significant electric current 
circulations, even for c = c, = 0.01, and that these currents allow the flow to cross the 
magnetic field lines in the radical expansion of sector 2. Hunt's prediction that Ap3D 
is proportional to N-5 provides values which are not radically different from the 
values presented in figure 7, but it neglects the strong dependence of Ap3D on c and 
c,. Hunt's argument involves a balance between the EM body force and the inertial 
'force', while we neglect the inertial effects in the core regions because N 9 1. Our 
results show that accelerations are not particularly large a t  any point in any of the 
three core regions, so that inertial effects are probably negligible in the cores for 
N = lo4- lo6. Inertial effects may be important in the high-velocity side layers or in 



Liquid metal flow through a sharp elbow in a magnetic field 417 

the high-acceleration interior layers, but this analysis is still valid if c and c, are larger 
than 6, the layer thickness. For N = lo6, 6 = N-f = 0.022, which is not smaller than 
some values of c and c,  considered here. In our analysis, the electric current from the 
top or bottom must enter the side at z = - 1 and must flow down or up the side until 
it passes through the side layer to the core as a uniform j,. For small c and c,, a 
significant fraction of the current from the top or bottom enters the side layer 
directly and then flows into the core, completely bypassing the side. Therefore, the 
side layer is an electrical conductor in parallel with the side. The side layer permits 
more current circulation which increases the pressure drop, but also reduces the 
severity of the three-dimensional disturbance. It may be possible to model the role 
of the side layer in the electrical circuit by using an effective c,. Such an 
approximation requires a model for side layers with significant inertial effects and 
such a model does not exist at present. 

Moon & Walker (1988) treat the flow in a gradual elbow with a radius of curvature 
which is much larger than the cross-sectional dimensions of the duct. If this model 
is extrapolated to a small radius of curvature, it predicts that the flow in the elbow 
(corresponding roughly to sector 2) is concentrated in thin boundary layers adjacent 
to the sides, while the fluid for - 1 < z < 1 is virtually stagnant. In this large-radius 
asymptotic solution, the electric current densities in the walls are much smaller than 
j, andj, in the liquid metal, so that the axial currents are trapped in the liquid metal 
for the very long distances required to bleed through the thin walls. This asymptotic 
solution is appropriate for large-radius elbows because the required long distances 
are an intrinsic feature of the geometry. However for sharp elbows, large potential 
gradients drive larger currents in the walls, and the three-dimensional electric 
current circulation can complete its circuit in axial lengths which are much shorter 
than those predicted by the extrapolation of the analysis of Moon & Walker (1988). 
The large-radius solution predicts a ApaD which is again proportional to 3. 
Extrapolated to small radii, this prediction overestimates Ap3=, particularly 
for larger values of c and c,, and it misses the fact that Ap3D has a maximum at 
c = c, = 0.05 for a = 1. 
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